IRw: An Intelligent Rewriting

Haisheng Zheng® Haoyuan Wu ™ Zhuolun He™ Yuzhe Ma*®* BeiYu"

Shanghai Al Laboratory ¥ CUHK % HKUST (G2)

Highlights Methodology Experimental Results
= We propose iRw, which effectively minimizes node counts in AlGs. _ Original AJG (Partial) e 2-_-§-‘_1-_'3-_°-_i-_r-ff_‘3%§-E_’E-t_f?_‘-_c-_t-_i-f?_?, I R | = Performance Comparison Between iRw and SOTA Rewriting.
| L 1 B 1 i 1 11 Nodes
= \We introduce a subgraph extraction algorithm that efficiently extracts . @Y L é}v - é}
subcircuits with optimization potential. Q/ Q/ (i)j' Benchmark Window Rewriting [3] iIRw
* \We propose a method of machine learning-guided optimization process, @ G @ 1< @ Q Until Convergence | First Iteration | Until Convergence
ensuring efficient optimization with minimal runtime overhead. @@@ F@ @@@ Fsé\) @@@ e % Nodes | # Nodes S s Nodes | T |2 Nodes | Time
- i i i : 3 A AN A o\ AN AN A |
Our method outperforms SOTA methods both in quality and runtime. M] \ M : ‘: M i ~dder 1020 897 004 392 | 013 997 028
AL / \I ! ”\} If ”\} If \I ‘\I ! ”\} I? ”} bar | 3,336 | 2,952 3.76 2952 | 0.62 | 2952 | 117
Related Works Urfliz]lUs]la][ls]|te ;LT L2 s LM LS| Lol L2 s LM | LS L6
Extract Single-Output ~ Expand to Multi-Output Filter Subcircuits hyp 214,335/ 204,726 20.28 204,926 11990 204,926 40.38
. . . I Subcircuits Subcircuits by Reconvergence | 12c 1,342 1’291 0.10 1,289 0.14 1,273 0.58
Subcircuit Extraction. Y " V(. ~ ,
Subcireuits Optimization © Subcircuits Replacement int2float | 260 239 0.02 232 | 009 | 226 0.36

- Typically tailored to the needs of rewriting algorithmes. : T S Encoding T F a\) """"""" 5

= Single-Output Subcircuits.
(e.g., Cut Enumeration [1], Maximum Fanout-Free Cones |2])
- Simplifies the optimization process.
= Multi-Output Subcircuits.
(e.g., Reconvergence-driven Window [3], Maximum Fanout-Free Window [4])
- Enables exploration of shared logic between outputs, enhancing efficiency.

log2 32,060 | 29,700 6.59 29,603 | 5.19 | 29,556 | 28.55
multiplier| 27,062 | 24,566 3.89 24426 | 3.93 | 24426 @ 8.80
Sin 5,416 | 5,132 1.85 5,115 | 1.05 | 5,095 /.73
sqrt 24,618 | 18,325 2.95 18,279 | 242 | 18,236 | 16.17
square | 18,484 | 16,606 2.72 16,386 | 204 | 16,316 | 6.4/

\)
A
N\/M LA f\\;’ LS

Subcircuit Optimization i 3 Uiz Us|Lla]ls] e pverage _ s _ 1032%) - | 1076% _
- The trade-off between optimization quality and computational overhead. | Initial Optimization % OptGuider Futher Optimization | | J lota i i 42.20 3201 i 11047
e— Primary Input | | AND (A, B) | | AND (NOT(A), B) | | AND (A, NOT(B)) | | AND (NOT(A), NOT(B)) Level 0 - 5
Method Advantages & Limitations | 1 l | 1 | 1 | UL = Impact of Multi-Output Subcircuit Extraction.
. v Fast; May provides optimal optimization. Figure 1. Overview of the IRw.
Pre-Computed Library [1, 5] o o o , , , , , " .
X Limited to small subcircuits. iIRw iteratively processes each node of a given AlG G, excluding primary inputs, as the Method # Initial Nodes | # Optimized Nodes | Average Improvement
teuristic Resynthesis [2. 3] / Fast: Can handle larger subcircuits. pivot node P, with a subcircuit input size limit K, following these stages: b rs -K 6: rw: rf: S 314.793 4.01%
| X May not deliver optimal optimization. @ Subcircuit Extraction. iR ’ 304,100 10.32%
Exact Resynthesis [6. 7] v Provides the best solutions; Handles large subcircuits. = Single-Output Subcircuits: S = TFI(G, K, P)
| X Requires substantial computational resources. Extracts the Transitive Fan-In (TFI) of the pivot node P, ensuring that the number = Performance Comparison Between iRw with and without OptGuider.
of inputs in .S does not exceed the limit |Inputs(S)| < K.
ML-Guided Optimization [8, 9]. = Expansion to Multi-Output Subcircuits: S = {S; UTFO(S;) | S; € S} S R w/jo OptGuider BB 1w with OptGuider B iRw w/o OpiGuidr HE R with OptGuider
- Optimization strategies are adapted to the input circuit to enhance efficiency. For each single-output subcircuit S;, explores its Transitive Fan-Out (TFO) to 1.0 |- o0 =0 N 00 nnnn
extend it into a multi-output subcircuit. - .
References = Filter by Reconvergence: S¢jioreq = 15’ | S’ contains reconvergent paths} 0w 1 0.9 | I -
Retains subcircuits that contain reconvergent paths, as these offer optimization 091 - 1 0.15% i i
potential for observability-based optimizations (e.g., resubstitution). 1 osl)
1] Alan Mishchenko et al. DAG-Aware AlIG Rewriting: A Fresh Look at o o . i I
Combinational Logic Synthesis. In Proc. DAC, 2006. @ Subcircuit Optimization. 0.8 | .
. = [nitial imization: Bal R 0.7 | :
2] Alan Mishchenko et al. Scalable Logic Synthesis using a Simple Circuit nitia OptIm.IZE.ithh . ance. esubstitution 024%
Structure. In Proc. IWLS. 2006, = Further Optimization: Rewrite, Refactor. m |
[3] Heinz Riener et al. Boolean Rewriting Strikes Back: Reconvergence-Driven . O%ﬁ;i;:i;r:ﬂldteantiﬁrensisi?:ic;;cuitsr;hatt;iin rtiglop\)/timizgéj by the futher O;a@‘ N %w“ e %&&@‘ & & Oi&e‘ N %%O‘Z”“ « @v@‘ & &
Windowing Meets Resynthesis. In Proc. ASPDAC, 2022. oP O SLaEs . 5 COMpUtationatovernead. o &) o &)
. | Node Feature Encoding.
4 >F<u||an%_§hu e\}v?"dA Daéabas'f. Deﬁ)er;denEFArérgeOv;%rk for K-Input Maximum - Edge information is integrated into AND gate representations. (a) Node Reduction comparison. (b) Runtime Comparison.
dNOUL-FTEE VVINAOW REWHTHNE. 1h Froc. ! ' - The logical level of node v in the AlG is encoded as:
[5] Wenlong Yanget al. Lazy Man'’s Logic Synthesis. In Proc. ICCAD, 2012. . | (level(v)) . (level(v)) " = Settings:
-\ = SIN : : : = COS : : i -
[6] Heinz Riener et al. On-the-fly and DAG-aware: Rewriting Boolean Networks (,20) 100002¢/d (0.20+1) 100002/d Experiments were runona 2.6 GHz AMD EPYC /H12 CPU
with Exact Synthesis. In Proc. DATE, 2019. Lightweight GNN. - Input size K = 6 was set for all configurable algorithms to ensure fair comparison.

Heinz Riener et al. Exact DAG-Aware Rewriting. In Proc. DATE, 2020. - GraphSAGE [10] is used as the GNN model due to its computational efficiency:.

Walter Lau Neto et al. LSOracle: a Logic Synthesis Framework Driven by Cost-Sensitive Learning.
Artificial Intelligence. In Proc. ICCAD, 20189. - Helps the classifier prioritize subcircuits that impact performance:

2] Xing Li et al. EffiSyn: Efficient Logic Synthesis with Dynamic Scoring and] M|Sc|a§S|fy|ng.nc.)n—qpt|m|zab|e subcircuits increases overhead without
Improving optimization.

Pruning. In Proc. ICCAD, 2023 = Overlooking optimizable subcircuits impedes the optimization process. multi-output subcircuit extraction.
[10] Will Hamilton et al. Inductive Representation Learning on Large Graphs. In =« Adjusts the weights of classes (Optimizable 1, Non-Optimizable |) in the Binary iIRw guided by OptGuider achieves significant improvements in runtime, with
Proc. NIPS, 2017, Cross Entropy loss function. only a slight impact on node reduction.

Conclusion

S

iIRw outperforms Window Rewriting [3] both in node reduction and runtime.

IRw achieves better node reduction, demonstrating the effectiveness of

IEEE/ACM Design, Automation and Test in Europe Conference (DATE) 2025, Lyon, France

