ChatLS: Multimodal Retrieval-Augmented Generation and Chain-of-Thought for Logic Synthesis Script Customization

Haisheng Zheng [♠] Haoyuan Wu [♡] Zhuolun He [♡] ♣

- Shanghai Artificial Intelligence Laboratory
- [⋄] The Chinese University of Hong Kong
- ChatEDA Technology

Jun. 25, 2025

Outline

- Introduction
- Algorithm
- Evaluation

Background

Recent advancements in Large Language Models (LLMs) have been leveraged to enhance EDA tool usability:

- Generating EDA Tool Scripts [1].
- Query-Answering for EDA Tool Documentation [2].

^[2] Yuan Pu et al. (2024). "Customized Retrieval Augmented Generation and Benchmarking for EDA Tool Documentation QA". In: *Proc. ICCAD*.

^[1] Haoyuan Wu et al. (2024). "ChatEDA: A Large Language Model Powered Autonomous Agent for EDA". In: IEEE TCAD.

Take a Further Step

Commercial logic synthesis tools provide numerous optional commands to improve netlist quality; these should be selected based on ^{[3][4]}:

- Circuit Design Characteristics.
- User Preferences.

^[4] Himanshu Bhatnagar (2002). Advanced ASIC Chip Synthesis: Using Synopsys® Design Compiler™ and PrimeTime®.

^[3] Matthew M Ziegler et al. (2016). "A Synthesis-Parameter Tuning System for Autonomous Design-Space Exploration". In: *Proc. DATE*.

Challenges: Comprehensive Analysis of Design

- Recent research [5] demonstrates the capability of LLMs to understand RTL code snippets, potentially aiding in analyzing circuit design for script customization.
- LLMs have limitations with long-context inputs, affecting their effectiveness in analyzing large codebases [6] and executing lengthy reasoning sequences [7].

^[7] Nelson F Liu et al. (2024). "Lost in the Middle: How Language Models Use Long Contexts". In: *Transactions of the Association for Computational Linguistics*.

^[5] Xufeng Yao et al. (2024). "RTLRewriter: Methodologies for Large Models aided RTL Code Optimization". In: *Proc. ICCAD*.

^[6] Carlos E Jimenez et al. (2024). "SWE-bench: Can Language Models Resolve Real-world Github Issues?" In: arXiv preprint.

Challenges: Selecting Suitable Synthesis Commands

Consider a scenario where a design requires timing optimization:

- Retiming [8] reduces delays in designs with extended critical paths and unbalanced register placement.
- Buffer balancing addresses timing issues in high-fanout nets.

^[8] Charles E Leiserson and James B Saxe (1981). "Optimizing Synchronous Systems". In: Proc. FOCS.

Problem Formulation

Logic Synthesis Script Customization

Design methodologies to enhance the capability of LLMs in customizing logic synthesis scripts to meet user requirements.

The Overall Flow of ChatLS.

 CircuitMentor is a circuit design analysis tool that transforms the circuit design into a graph representation and employs graph neural network (GNN) to extract high-level features from the circuit design.

The Overall Flow of ChatLS.

• **SynthRAG** is a multi-modal retrieval-augmented generation (RAG) framework used to retrieve relevant information for LLMs when customizing logic synthesis scripts.

The Overall Flow of ChatLS.

 Generator (LLM) drafts a customized logic synthesis script based on user requirements, integrating synthesis tool reports, relevant data from SynthRAG, and high-level information matched using embeddings from CircuitMentor.

The Overall Flow of ChatLS.

SynthExpert is a Chain-of-Thought (CoT) reasoning mechanism that uses SynthRAG to fetch
step-relevant information and iteratively evaluates the suitability of the drafted logic
synthesis script for the circuit design.

Circuit Mentor: Motivation

- LLMs encounter significant challenges in comprehending complex circuit code.
- Numerous studies [9][10][11] to leverage graph neural networks (GNNs) to extract meaningful characteristics from complex circuits.

^[11] Ziyi Wang et al. (2024). "FGNN2: A Powerful Pre-Training Framework for Learning the Logic Functionality of Circuits". In: *IEEE TCAD*.

^[9] Haoyuan Wu et al. (2025). "Circuit Representation Learning with Masked Gate Modeling and Verilog-AIG Alignment". In: *Proc. ICLR*.

^[10] Zhengyuan Shi et al. (2024). "DeepGate3: Towards Scalable Circuit Representation Learning". In: *Proc. ICCAD*.

Circuit Mentor: Graph-Based Assistant for Circuit Analysis

- Graph Representation:
 Transforming the circuit code into a graph and stored it in the Neo4j database.
- Global Circuit Feature Extraction: Hierarchical GNN based on GraphSAGE [12].
- Local Circuit Feature Extraction: LLMs could generate query requests using Cypher to extract code snippets for analysis.

Workflow Visualization of CircuitMentor.

[12] Will Hamilton, Zhitao Ying, and Jure Leskovec (2017). "Inductive Representation Learning On Large Graphs". In: *Proc. NIPS*.

Circuit Mentor: Metric Learning

Illustration of the Metric Learning Process.

• Motivation:

GNN is a topology-based approach, which may result in failing to retrieve the same type of components.

Metric Learning:

Similar designs are pulled closer together, while dissimilar ones are pushed farther apart.

SynthRAG: Multimodal RAG for Domain-Specific Retrieval

Category	Representation	Query Method	Retrieval Content			
High Level Info. of Circuit Design	Graph Embedding	Join	Compile Strategy Optimization Strategy			
Code of Circuit Design	Graph Structure	Direct	The code of the module where the path is located			
Target Library	Graph Structure	Direct	Gate Cell Information			
Logic Synthesis Tool User Manual	LLM Embedding	Direct	Command Usage Command Requirement			

Table: Summary of Query Methods.

SynthRAG: Graph Embedding-Based Retrieval

Circuit Embeddings Similarity-Based Retrieval:

$$oldsymbol{z}_{Retrieved} = rg \min_{oldsymbol{z}_{db}} \left(\operatorname{sim}(oldsymbol{z}_{query}, oldsymbol{z}_{db})
ight)$$
 (1)

• Circuit Performance-Based Reranking:

$$Score(z_i) = \alpha \cdot sim(z_{query}, z_i) + \beta \cdot c_i$$
 (2)

SynthRAG: Graph Structure-Based Retrieval

An Example of Cypher Query.

Cypher Queries^[13] are used to retrieve information from circuit graphs.

[13] Nadime Francis et al. (2018). "Cypher: An Evolving Query Language for Property Graphs". In: Proc. SIGMOD.

SynthRAG: LLM Embedding-Based Retrieval

- Embedding Generation:
 - The text-embedding-3-large model [14] is used to convert the user manual into text embeddings.
- **Retrieval Reranking:** GPT-40^[15] is employed as a reranker to improve retrieval accuracy.

^[15] Josh Achiam et al. (2023). "GPT-4 Technical Report". In: arXiv preprint.

^[14] https://platform.openai.com/docs/guides/embeddings

SynthExpert: Motivation

LLMs can be effectively assisted in complex decision-making tasks with:

- Retrieval-Augmented Generation (RAG) [16].
- Chain-of-Thought (CoT) [17] reasoning.

^[17] Jason Wei et al. (2022). "Chain-of-Thought Prompting Elicits Reasoning in Large Language Models". In: *Proc. NIPS*.

^[16] Patrick Lewis et al. (2020). "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks". In: Proc. NIPS.

SynthExpert: Iterative Customization with CoT and RAG

Workflow Visualization of SynthExpert.

- LLM initially generates a series of thought steps.
- SynthExpert employs SynthRAG to retrieve information for step revision, ensuring command suitability in customized scripts:

$$T_{1:i}^{\star} = p_{\theta}(\cdot|I, T_{1:i-1}^{\star}, T_i, R_i)$$
 (3)

Evaluation Settings

- Logic Synthesis Tool: Design Compiler.
- Circuit Designs: Part of the OpenROAD [18] example.
- Technology Library: Nangate 45nm with the 5K_heavy_1k wireload model.
- **Synthesis Script**: Configured according to the OpenROAD example.
- Baselines: $GPT-4o^{[19]}$ (Version 2024-08-06), Claude 3.5-Sonet [20] (Version 2024-10-22).
- Resynthesis Iterations: One.

^[20] Anthropic PBC (2024). Introducing Claude 3.5 Sonnet.

^[18] T Ajayi et al. (2019). "OpenROAD: Toward a Self-Driving, Open-Source Digital Layout Implementation Tool Chain". In: *Proc. GOMACTECH*.

^[19] Josh Achiam et al. (2023). "GPT-4 Technical Report". In: arXiv preprint.

Evaluation Results

	Baseline			GPT-40			Claude 3.5 Sonet			ChatLS (Ours)						
Design	Timing (ns)			Area	Timing (ns)		Area	Timing (ns)		Area Ti		iming (ns)		Area		
	WNS	CPS	TNS	(μm^2)	WNS	CPS	TNS	(μm^2)	WNS	CPS	TNS	(μm^2)	WNS	CPS	TNS	(μm^2)
aes	-0.16	-0.16	-31.64	16577.12	-0.17	-0.17	-31.64	16408.21	-0.17	-0.17	-30.70	16126.78	0.00	0.00	0.00	15919.04
dynamic_node	-0.08	-0.08	-0.45	21155.51	0.00	0.01	0.00	16327.08	0.00	4.06	0.00	20048.95	0.00	4.85	0.00	18907.28
ethmac	-0.54	-0.54	-76.55	80533.36	-0.55	-0.55	-75.89	80502.77	-0.54	-0.54	-128.99	81993.70	-0.47	-0.47	-55.72	80349.56
jpeg	-1.17	-1.17	-439.66	107612.16	0.00	0.00	0.00	57227.24	0.00	0.00	0.00	66106.85	0.00	0.00	0.00	67290.02
risv32i	0.00	0.59	0.00	10241.00	0.00	0.59	0.00	10241.00	0.00	0.60	0.00	9711.66	0.00	0.74	0.00	9329.95
swerve	0.00	0.81	0.00	161551.64	0.00	0.79	0.00	143557.54	0.00	1.86	0.00	158364.70	0.00	2.05	0.00	143545.30
tinyRocket	-0.88	-0.88	-1057.89	44231.28	-0.21	-0.21	-42.22	35960.81	-0.33	-0.33	-484.71	41999.01	-0.09	-0.09	-14.74	36070.66

Table: Performance Comparison for Logic Synthesis Script Customization (*Pass*@5).

Conclusion

In this paper, we proposed:

- A Graph-Based Method that enhances the ability of LLMs to analyze and understand circuit designs, with GNNs supporting the analysis process.
- A Domain-Specific Multimodal RAG Framework for efficient information retrieval to improve LLM-driven script customization.
- A Task-Specific CoT Mechanism integrated with the multimodal RAG framework, enabling iterative refinement of synthesis scripts through reasoning revision.

