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Abstract—Large Language Models (LLMs) have demonstrated sig-
nificant potential in automating the Electronic Design Automation
(EDA) process through effective integration with EDA tools. This
paper targets the customization of logic synthesis scripts, which is
crucial for accommodating the unique characteristics of each design
in the EDA workflow. The proposed framework, called ChatLS, inte-
grates multimodal retrieval-augmented generation (RAG) and chain-
of-thought (CoT) reasoning, enabling LLMs to collaboratively analyze
design features and precisely customize synthesis scripts. Experimental
results demonstrate that ChatLS has achieved superior performance in
customizing synthesis scripts with a commercial logic synthesis tool.

I. INTRODUCTION

Electronic design automation (EDA) encompasses a suite of
software tools designed for the creation, analysis, and verification
of electronic systems. These tools have evolved to support intricate
design flows and cater to the complex requirements of advanced
semiconductor manufacturing. To enhance the user experience and
development efficiency, application engineers are deployed by ven-
dors to offer tailored on-site support. However, the significant costs
associated with training and manpower have led to considerations
of automating support services, eliminating the need for human
involvement.

Recent advancements in large language models (LLMs) have
prompted the proposal of various techniques that utilize LLMs to
enhance the usability of EDA tools. For instance, addressing the
challenge of navigating extensive and intertwined functionalities in
EDA tool documentation, several studies [1]-[3] have developed cus-
tomized retrieval-augmented generation (RAG) frameworks, which
improve the accuracy of LLM-generated responses, enabling the
efficient retrieval of relevant information to resolve user queries.
Additionally, the complexity of numerous EDA commands can
overwhelm users. In response, studies [4], [5] have fine-tuned
LLMs specifically for the EDA domain, facilitating the automated
generation of tool call scripts based on user requirements.

While these developments represent significant advances in har-
nessing LLMs to assist users with EDA tools, there remains room
for further enhancement. As for logic synthesis tools, a crucial
aspect is the integration of user designs and target libraries with
insights derived from logic synthesis tool reports. Commercial logic
synthesis tools [6], [7] offer numerous optional commands aimed at
improving design quality, which need to be selected based on user
preferences and the analysis of the design [8], [9]. Additionally,
the constraint settings included in synthesis scripts must be based
on the characteristics of the design and the target library [10].
Moreover, logic synthesis is generally an iterative process, not a
one-time execution. After the initial synthesis, users may employ
resynthesis strategies to resolve violations within the netlist or to
enhance netlist quality, with strategy choices informed not only
by the design and target library but also by insights from logic
synthesis tool reports [10]. Therefore, the customization of synthesis
scripts, informed by a comprehensive understanding of the designs,
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Fig. 1 An Illustration of ChatLS.

target libraries, and the feedback from logic synthesis tool reports,
is essential.

To achieve this goal, several challenges need to be addressed. The
primary challenge involves a comprehensive analysis of design char-
acteristics at both global and local levels to inform script creation.
Global characteristics, such as the architecture and hierarchy of the
design, guide the selection of appropriate compilation strategies [10],
while local characteristics, including critical path analysis, inform
constraint specifications in the scripts. Recent research [11]-[13]
has demonstrated the capability of LLMs to understand register-
transfer level (RTL) code snippets, suggesting potential applications
in analyzing circuit design characteristics for customizing scripts.
However, LLMs have significant limitations when processing long-
context inputs, which affects their effectiveness in analyzing large
codebases [14] and executing lengthy reasoning sequences [15].

Numerous logic synthesis algorithms [16]-[18] use graph-based
representations of circuit designs to facilitate analysis and optimiza-
tion. This graph-based representation allows for efficient exploration
of design characteristics through a structured representation of the
topology. Additionally, the graph-based representations of circuit
designs have enabled numerous studies to leverage graph neural
networks (GNNs) to extract meaningful characteristics from complex
circuits [19]-[24]. Thus, leveraging graph-based analysis methods
may help the LLMs overcome challenges in understanding complex
circuit designs.

The second major challenge involves selecting synthesis com-
mands within scripts that align with specific design characteristics.
For instance, consider a scenario where a design requires timing
optimization. Techniques such as retiming [25] and buffer balancing,
both integrated into logic synthesis tools, can effectively reduce
path delays. However, choosing the appropriate technique requires
thorough consideration. Retiming is particularly effective for designs
with extended critical paths that experience timing violations due
to unbalanced register placement or excessively long combinational
logic. Alternatively, buffer balancing is advantageous for mitigating
timing issues in high-fanout nets. Therefore, a careful assessment of
the strengths of each technique is essential for optimizing timing.

Techniques like retrieval-augmented generation (RAG) [26] and
chain-of-thought (CoT) [27] reasoning have proven effective in
assisting LLMs with complex decision-making tasks. In our context,
RAG could help the LLMs retrieve relevant information and context
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from circuit design snippets, target library, tool manuals, or past use
cases, providing a well-informed foundation for decision-making.
CoT then enables step-by-step reasoning to evaluate the trade-offs
and select the most suitable solution from multiple options. It guides
the LLMs through a logical progression of decisions, considering
the impact of each command on design performance, ensuring that
the final synthesis script is both optimal and aligned with user
preferences.

In this paper, we present ChatLS, a framework for customizing
logic synthesis scripts to meet specific requirements expressed in
natural language. As illustrated in Fig. 1, ChatLS consists of four
main components: a circuit analyzer for assisting LLM analyze and
understand circuit designs, a search engine for retrieving relevant
information, a CoT for decision-making during script refinement,
and an LLM that interprets and generates synthesis scripts from
natural language instructions.

Our major contributions are summarized as follows:

« We propose a graph-based method that enhances the ability
of LLMs to analyze and understand circuit designs by trans-
forming them into graph databases, with GNN supporting the
analysis process.

« We introduce a domain-specific multimodal RAG framework
that efficiently retrieves information to enhance LLMs for
customizing logic synthesis scripts.

o We present a task-specific CoT mechanism, in tandem with the
multimodal RAG framework, that enables iterative refinement
of synthesis scripts by revising reasoning steps based on re-
trieved data.

o We conduct comprehensive experiments, demonstrating that
ChatLS achieves superior performance in customizing logic
synthesis scripts.

The remainder of this paper is structured as follows: Section II
provides the preliminary background. Section III presents the prob-
lem formulation. The detailed description of the ChatLS framework
is discussed in Section IV. The experimental results are presented
and analyzed in Section V. Finally, conclusions are drawn in
Section VI

II. PRELIMINARIES
Abstract Syntax Tree (AST) represents the hierarchical structure of

source code, where each node corresponds to a specific construct or
element in the program. It enables efficient analysis, transformation,

and manipulation by abstracting the logical structure while omitting
unnecessary syntactic details. ASTs are fundamental in compiler
design, serving as an intermediate representation for syntax analysis,
semantic validation, and optimization. They are also extensively used
in static code analysis, automated reasoning, and code refactoring,
effectively bridging raw code with its logical representation and
enhancing software quality.

Retrieval-Augmented Generation (RAG) [26] targets the prob-
lem of enhancing natural language generation by combining the
strengths of retrieval-based and generative approaches to improve
both knowledge and contextual accuracy, making it effective for
LLMs. RAG augments the generative process with a retriever module
that dynamically retrieves relevant information {ri}le from an
external resource R, such as a document corpus or knowledge base,
based on an input query q. The retrieved information is then utilized
by a generative model to produce a response y. In RAG, the objective
is to maximize the conditional probability P(y|g), which can be
expressed as:

k
P(ylg) = Y P(ylri,q) P(rila), M
i=1
where P(r;|q) represents the probability of retrieving a piece of
information r; given the query g, and P(y|r;,q) is the probability
of generating the output y conditioned on both the query and a
specific retrieved piece of information. By retrieving diverse and
relevant information, RAG grounds the LLMs in external knowledge,
thereby improving response quality and factual accuracy in complex
tasks.

Chain of Thoughts (CoT) reasoning [27] enhances the performance
of LLMs in tasks requiring complex reasoning, such as multi-step
math word problems. Instead of generating the final answer directly,
CoT prompts LLMs to generate intermediate steps, called thoughts,
that serve as a scratch space guiding the model towards the solution.

Given an input z, CoT introduces intermediate steps s1, S2, . . ., Sk,
forming a path from input to output:
T — (S1,82,...,8k) = Y, )

this explicit reasoning framework helps LLMs break down complex
tasks into manageable components, improving both accuracy and
interpretability.
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III. THE SCOPE OF CHATLS

ChatLS is an innovative framework that provides a conversational
interface, allowing users to employ natural language to customize
synthesis scripts tailored to the specific requirements of each design.
By interpreting both the design code and user requirements, ChatLS
generates synthesis scripts that align with particular design attributes
and user preferences.

Problem 1 (Objective of ChatLS). Design methodologies to enhance
the capability of LLMs in customizing logic synthesis scripts to meet
user requirements.

IV. ALGORITHMS

Fig. 2 illustrates the overall workflow of ChatLS. The process
begins with the user providing the requirements, circuit design code,
corresponding logic synthesis scripts, and reports generated by the
logic synthesis tool. Based on this input, the following steps are
carried out to generate a customized logic synthesis script for the
design:

o CircuitMentor is a circuit design analysis tool that transforms

the circuit design into a graph representation and employs GNN
to extract high-level features from the circuit design.

o SynthRAG is a multi-modal RAG framework used to retrieve
relevant information for LLMs when customizing logic synthe-
sis scripts.

Generator (LLM) drafts a customized logic synthesis script
based on user requirements, incorporating the reports from the
logic synthesis tool, the compilation and optimization strategies
retrieved by SynthRAG, and high-level information matched by
SynthRAG using embeddings extracted from the circuit design
by CircuitMentor.

o SynthExpert is a CoTs mechanism that uses SynthRAG
to fetch additional information and iteratively evaluates the
suitability of the drafted logic synthesis script for the circuit
design. During this process, SynthRAG is prompted to provide
code for netlist paths, high-level information for corresponding
modules, usage details for commands in the logic synthesis
manual, and specifics of the target library. These elements
ensure the generated logic synthesis script complies with design
requirements and command specifications.

A. CircuitMentor: Graph-Based Assistant for Circuit Analysis

Circuit Representation. LLMs encounter significant challenges in
comprehending complex circuit code, as discussed in Section I

Given that circuits can naturally be represented as graphs, we intro-
duce CircuitMentor, which exploits this graph-based representation
to enhance the capacity of LLMs to customize logic synthesis scripts.

As visualized in Fig. 3, the circuit code is transformed into a
graph, specifically an AST. This graph structure is hierarchical, with
nodes representing different levels of the circuit design. At the high-
est level, the graph contains nodes representing the overall design,
with subnodes corresponding to individual modules. Each module
node stores its associated Verilog code, enabling LLMs to analyze
the structure and functionality of paths when customizing scripts.
Within each module, subnodes represent the circuit components,
such as gates and registers. This hierarchical organization allows for
efficient traversal and multi-level analysis of the design. Customizing
logic synthesis scripts often requires analyzing critical paths within
the circuit. Therefore, our goal is to identify an appropriate graph
database to store the circuit graph, enabling efficient path extraction
and analysis. Neo4j [28] is well-suited for this purpose, as it supports
Cypher [29], a query language that can be leveraged to extract
paths and subgraphs from circuit graphs, facilitating efficient graph
traversal and analysis.

Global Circuit Feature Extraction. Understanding the characteris-
tics of a circuit is crucial for customizing logic synthesis scripts.
Different circuit components, such as arithmetic and memory-
based modules, require distinct compilation strategies. Arithmetic
components focus on optimizing speed and area, while memory
components prioritize access time and power efficiency. Tailoring the
compilation strategy to the function of each component is essential
for achieving overall circuit optimization. Nevertheless, effectively
conveying these characteristics through LLMs presents significant
challenges, as previously outlined in Section I.

Since the circuit can be represented as a graph, GNNs can
be employed to extract meaningful features from its design. We
propose a hierarchical GNN based on GraphSAGE [30] to learn
embeddings for the circuit. By treating each module as a subgraph,
our approach captures the unique characteristics of each module.
This hierarchical approach is crucial for capturing both local and
global structural patterns within the circuit design. GraphSAGE
aggregates features from neighboring nodes and their respective
subgraphs, facilitating the extraction of hierarchical features. The
key operation of GraphSAGE is defined as:

P =& (W(k) - Aggregator ({h;k_l),Vu € N(v)})) , 3

where hgk) represents the embedding of node v at the k-th iteration,
N(v) denotes the set of neighboring nodes of v, and Aggregator
refers to the aggregation function. This aggregation step effectively
encodes local circuit structural features into a compact and informa-
tive node representation.

The type of circuit design also plays a crucial role in customizing
logic synthesis scripts. In cases where the design consists of a single
module or has been flattened for synthesis, the graph representation
collapses into a single node, rendering it ineffective for GNN-based
operations. To address this, global pooling strategies are employed
to obtain a global embedding. The global embedding is computed as
the mean of all node embeddings in the design, given by zglobal =
% Si= 1¥h,;. where N is the total number of modules in the
circuit. This ensures that even when the design is flattened or consists
of a single module, a meaningful global feature representation for
the entire design can still be derived.

Metric Learning. Since our hierarchical GNN aims to extract



Fig. 4 Illustration of the Metric Learning Process. (a) Initially, the
embeddings are randomly scattered across the space. (b) After train-
ing, embeddings of similar data points converge, while embeddings
of dissimilar data points diverge, forming distinct clusters.

embeddings from modules in the circuit graph, we need first address
the challenge that topology-based approaches may fail to identify
identical components due to structural variations. Given that GNNs
are inherently topology-dependent, this poses a considerable chal-
lenge.

To address this, we adopt a metric learning approach, which
focuses on learning a similarity function or distance metric that
ensures similar designs are close in the embedding space, while
dissimilar designs are placed farther apart. Various loss functions,
such as contrastive loss [31] and multi-similarity loss [32], are
commonly used to optimize the embedding space. These methods en-
courage the model to learn an embedding space where the geometry
of the embeddings aligns with the desired similarity relationships
between designs. Fig. 4 illustrates the evolution of embeddings
during training. Initially, the embeddings are dispersed across the
space, but after training, similar designs are pulled closer together,
while dissimilar ones are pushed farther apart. This enhances the
discriminative power of the embeddings, making them more effective
for tasks such as design retrieval and similarity comparison.

By learning these discriminative embeddings, we capture the
underlying structure of designs, enabling the efficient retrieval of
relevant circuit designs based on their embeddings.

B. SynthRAG: Multimodal RAG for Domain-Specific Retrieval

The RAG framework substantially improves the generative ca-
pabilities of LLMs. Building on this advancement, we present
SynthRAG, a domain-specific, multimodal RAG framework de-
signed to enhance the ability of LLMs in customizing logic synthesis
scripts. To support this goal, we first establish a database that
stores the relevant information. TABLE I provides a summary of
the different retrieval types, their corresponding representations, and
the query methods employed in our approach.

Graph Embedding-Based Retrieval. In SynthRAG, graph em-
beddings serve as the foundation for information retrieval, link-
ing related circuit designs with their respective compilation and
optimization strategies. These embeddings are computed using
CircuitMentor, which generates vector representations of circuit
designs or modules. The resulting embeddings are used to query
the graph database, retrieving relevant circuit designs with their
respective compilation and optimization strategies.

Given a query embedding, Zquery, the retrieval process relies on
nearest neighbor search over the database of graph embeddings. The
nearest neighbor search is formalized as:

ZRetrieved = argmin (Sim(zque’rya zdb)) s €]
Zdb

TABLE I Summary of Query Methods.

Query
Method

Category Representation Retrieval Content

High Level Information
of Circuit Design

Compile Strategy
Optimization Strategy
The code of the module
where the path is located

Graph Embedding Join

Code of Circuit Design Graph Structure Direct

Target Library Graph Structure Direct Gate Cell Information

Logic Synthesis Tool
User Manual

Command Usage

LLM Embedding Direct )
Command Requirement

where zq;, represents the embeddings of designs in the database, and
sim denotes the cosine similarity function. This ensures that the most
semantically similar designs to the query are retrieved, facilitating
efficient information retrieval for logic synthesis.

In RAG frameworks, reranking plays a crucial role in refining
retrieved results to better fit the requirements of the target domain.
Existing reranking methods [33], [34], commonly used in text-
based retrieval, cannot be directly applied to our graph embeddings
due to the unique characteristics of circuit designs. For instance,
although both an arithmetic logic unit (ALU) and a systolic array
are categorized as arithmetic components, they differ considerably
in terms of scale and complexity. To address this, we introduce
a domain-specific reranking function that incorporates additional
criteria, such as timing, area, and power consumption, to reorder
the retrieved graph embeddings.

Let Zretrievea = {z1,22,...,2K} represent the set of Top-
K retrieved embeddings, and let ci,c2,...,ckx denote their cor-
responding performance metrics (e.g., timing, area, power). The
reranking function, f(Zretrieved, C), computes a new ranking score
for each design by considering both the similarity of embeddings
and the additional characteristics. The reranking is computed as:

Score(z;) = a - sim(Zquery, 2i) + B ¢, 5)

where sim(Zquery, i) is the cosine similarity between the query
embedding Zguery and the retrieved embedding z;, ¢; is the domain-
specific characteristic for design ¢, and « and /3 are weighting param-
eters that balance the contribution of similarity and characteristics
in the final ranking.

The reranking process selects the designs with the highest scores,
prioritizing those that meet the functional requirements and resource
constraints of the query. This ensures that the retrieved designs are
not only semantically similar to the query but are also optimized
according to specific design criteria.

Graph Structure-Based Retrieval. In SynthRAG, the graph-based
retrieval system utilizes Cypher queries, which can be generated
by LLMs, to extract specific design details and information about
the target library from the database. Each query retrieves a single
result, thereby eliminating the need for reranking. The target library
is integrated into the database to avoid inefficiencies associated with
directly inputting it into the LLMs for processing.

LLM Embedding-Based Retrieval. Several studies, such as [1],
have adapted RAG frameworks to retrieve information from EDA
user manuals, which contain hybrid information. In our context,
we focus exclusively on retrieving descriptions of logic synthesis
commands within the user manual. Accordingly, SynthRAG utilizes
the text-embedding-3-large model' to transform the user
manual into text embeddings. Subsequently, to enhance the accuracy

Thttps://platform.openai.com/docs/guides/embeddings



TABLE II Overview of Hardware Designs in the Database.
Components ‘

Rocket [36], Sordor [37]
NVDLA [38], Gemmini [39]

Category

Processor Core
Machine Learning Accelerator

Vector Arithmetic SIMD [40]
Signal Processing FFT [41]
Cryptographic Arithmetic SHA3 [37]

of the retrieved information, SynthRAG employs GPT-40 [35] as
a reranker.

C. SynthExpert: Iterative Customization with CoT and RAG

Although RAG and CoT techniques can significantly enhance
LLMs by facilitating complex decision-making tasks, their integra-
tion into ChatLS demands careful consideration.

Despite RAG is effective in general applications, it faces lim-
itations in handling complex reasoning tasks requiring multi-step
reasoning. These tasks are difficult to encapsulate into simple search
queries, often leading to challenges in retrieving relevant infor-
mation, thus limiting the applicability of RAG. Specifically, RAG
approaches typically retrieve all pertinent information in a single
step, disregarding the dynamic and iterative nature of information
requirements throughout the synthesis script customization process.
In our context, logic synthesis script customization involves multi-
dimensional data, including design characteristics, user manuals, and
the target library. Retrieving all relevant information at once may
overwhelm the LLMs, complicating the prioritization and application
of the most pertinent data at each reasoning step. Consequently,
relying solely on the initial task prompt often lacks the depth needed
to effectively guide subsequent reasoning and generation, leading to
suboptimal retrieval performance.

Similarly, CoT facilitates LLMs in breaking down complex tasks
into manageable steps, which is crucial for generating accurate and
optimized synthesis scripts. However, without explicit guidance,
LLMs may introduce errors due to incomplete domain knowl-
edge [42] or be influenced by hallucinations [43]. In our scenario,
these inaccuracies may render customized logic synthesis scripts
non-executable, as LLMs could generate nonexistent or incom-
patible commands for the circuit design. To address these chal-
lenges, we propose SynthExpert, which synergistically integrates
CoT with RAG for logic synthesis customization. As shown in
Fig. 2, SynthExpert mines each reasoning step to generate the final
synthesis script.

Given a task prompt I, the LLM initially generates a series
of thought steps, represented as T := {T;}i-;, where T; is
the i-th thought step. In SynthExpert, these steps correspond to
intermediate reasoning stages, where the synthesis script is drafted
based on user inputs. Recognizing potential inaccuracies in these
steps, SynthExpert utilizes RAG to revise each step sequentially.

For each thought step 7;, the LLM formulates a query Q; by
incorporating the task prompt / to retrieve information R; pertinent
to this step, thereby refining 7; in the subsequent reasoning phase.
Once Q; is formulated, the retrieval mechanism fetches the relevant
information R; = Retrieve(Q;). The retrieved information R; is
then used to revise the current thought step, producing a revised
thought step7;":

Tl*z :pe('|I»T1*:¢—17Ti7Ri) (©)

where po(-) represents the probability function of the LLM gen-
erating the revised thought 77 based on the integrated inputs and
retrieved data.

| 0.85

Precision

Recall | 0.80

F1 Score ] 0.82

Fig. 5 Performance of SynthRAG.

This approach effectively mitigates the limitations of RAG and
CoT by ensuring that each reasoning step is reinforced with the
most pertinent and contextually relevant information. By revising
each thought step individually, SynthExpert ensures that the LLM
receives the appropriate context at every stage of the synthesis
script customization process. This sequential retrieval and revision
mechanism enhances the relevance and accuracy of the information
used, providing richer contextual cues that align with the specialized
demands of logic synthesis. Furthermore, focusing on revising
individual thought steps minimizes the risk of introducing new
errors into previously accurate reasoning steps, thereby preserving
the integrity and reliability of the reasoning process.

As illustrated in TABLE III, integrating SynthExpert within
ChatLS ensures that each aspect of synthesis script customization
is informed by accurate and relevant data, thereby substantially
improving the quality and reliability of the customized scripts.

V. EXPERIMENTAL EVALUATION

ChatLS was implemented using PyTorch [49], PyTorch Geomet-
ric [50], FAISS [51], Neo4;j [28], with GPT-40 (Version 2024-08-
06) [35] employed as the generator. To construct the database for
SynthRAG, numerous open-source designs were synthesized using
the Nangate 45nm’ library as the target technology, alongside the
5K_heavy_1lk wireload model, employing various optimization
and compilation strategies. The corresponding logic synthesis scripts
were then converted to the Design Compiler format, where they are
treated as expert drafts. TABLE II presents a selection of hardware
designs included in the database. Comprehensive experiments are
conducted to evaluate the efficiency of ChatLS in customizing logic
synthesis scripts.

A. Evaluation of SynthRAG

To evaluate SynthRAG, experiments were conducted using Chip-
yard [37] to generate SoCs with various configurations. These
configurations provided a diverse set of circuit designs, enabling
the assessment of the model’s ability to retrieve relevant logic
synthesis scripts and optimization strategies. The primary goal was
to retrieve designs and components with high similarity to the query
while considering resource usage to ensure effective customization
of synthesis strategies. The F} score was selected for evaluation, as
it balances precision and recall, making it well-suited for this task,
where both false positives (irrelevant designs) and false negatives
(missed relevant designs) can significantly impact performance:

2 x Precision x Recall
= — ) @)
Precision + Recall

‘o . TP . TP
where Precision is 75 TFP and Recall is TPIFN Here, true

positive (TP) refers to correct predictions, false positive (FP) to
incorrect predictions, and false negative (FN) to missed predictions.
The results, summarized in Fig. 5, show that SynthRAG successfully
retrieved relevant designs and modules, enabling effective customiza-
tion of logic synthesis scripts.

Zhttps://eda.ncsu.edu/freepdk/freepdk45



TABLE III Performance Comparison for Logic Synthesis Script Customization (Pass@5).

GPT-40 [35] Claude 3.5 Sonet [44] ChatLS (Ours)
Design Timing (ns) Area Timing (ns) Area Timing (ns) Area

WNS CPS  TNS (um?) WNS  CPS TNS (um?) WNS CPS  TNS (um?)

aes -0.17  -0.17 -31.64 16408.21 -0.17  -0.17  -30.70 16126.78 0.00 0.00 0.00 15919.04
dynamic_node | 0.00 0.01 0.00 16327.08 0.00 4.06 0.00 20048.95 0.00 4.85 0.00 18907.28
ethmac -0.55  -0.55  -75.89 80502.77 -0.54 -0.54  -128.99 81993.70 -047  -047 -55.72 80349.56
jpeg 0.00 0.00 0.00 57227.24 0.00 0.00 0.00 66106.85 0.00 0.00 0.00 67290.02
risv32i 0.00 0.59 0.00 10241.00 0.00 0.60 0.00 9711.66 0.00 0.74 0.00 9329.95
swerve 0.00 0.79 0.00 143557.54 | 0.00 1.86 0.00 158364.70 | 0.00 2.05 0.00 143545.30
tinyRocket -0.21  -021 4222 35960.81 -0.33  -0.33  -484.71 41999.01 -0.09  -0.09 -14.74 36070.66

TABLE IV Performance Baseline of Various Designs.

. Timing (ns) 2
Design WNS [ CPS [ TNS Area (um=)
aes [45] -0.16 | -0.16 -31.64 16577.12
dynamic_node [46] -0.08 -0.08 -0.45 21155.51
ethmac [45] -0.54 | -0.54 -76.55 80533.36
jpeg [45] -1.17 | -1.17 -439.66 107612.16
risc32i [47] 0.00 0.59 0.00 10241.00
swerv [48] 0.00 0.81 0.00 161551.64
tinyRocket [36] -0.88 | -0.88 | -1057.89 44231.28

B. Evaluation of ChatLS

Timing optimization is a key focus, as it ensures sufficient slack
that can be traded for improvements in area and power without
compromising timing closure. Accordingly, the evaluation empha-
sizes ChatLS ability to customize logic synthesis scripts for optimal
timing.

Benchmark and Baseline. The evaluation uses design benchmarks
from OpenROAD [47], as summarized in TABLE IV. The Design
Compiler was employed as the logic synthesis tool. The Nangate
45nm library was used as the target technology, along with the
5K_heavy_1lk wireload model. The original OpenROAD syn-
thesis scripts were adapted to ensure compatibility with Design
Compiler [6], and these adapted scripts serve as the baseline for
evaluating ChatLS. This baseline provides a reference for assessing
improvements or deviations in synthesis performance compared to
the proposed methods.

Model Comparison. The performance of ChatLS was compared
with two state-of-the-art LLMs: GPT-4o0 (Version 2024-08-06) [35]
and Claude 3.5-Sonet (Version 2024-10-22) [44]. For this evaluation,
ChatLS, GPT-40, and Claude 3.5 each customize the logic synthesis
script based on a baseline script, with only a single iteration of
customization performed. To ensure a fair and consistent evaluation,
all language model baselines were tested using identical prompt
engineering techniques, and basic configurations, including the time
period, are not allowed to change. The quality of each customized
logic synthesis script was evaluated after this iteration. In cases
where the design code exceeds the token limits of the models, it
was partitioned into segments, each containing no more than 128,000
tokens.

Evaluation Metrics. The evaluation employs the following key
metrics to assess the synthesis script quality:
« Timing: Measures the ability of the design to meet operational
speed requirements, including worst negative slack (WNS),
critical path slack (CPS), and total negative slack (TNS).

o Area: Assesses the total hardware resources utilized by the
synthesized circuit.
These metrics offer a thorough evaluation of the quality of logic
synthesis scripts.

Evaluation Results. The evaluation results for ChatLS are sum-
marized in TABLE III. All models, including GPT-40, Claude 3.5-
Sonet, and ChatLS, improve design timing relative to the baseline.
ChatLS consistently delivers the best timing performance, showing
the most substantial improvements across all evaluated designs.
This underscores the superior capability of ChatLS in customizing
logic synthesis scripts for timing optimization. Both ethmac and
tinyRocket exhibit timing violations, as only a single iteration
was executed. However, logic synthesis is inherently an iterative
process, not a one-time execution. Additional iterations are required
to further resolve timing issues. While GPT-40 achieves the best
area results in some cases, the primary objective of this evaluation
is timing improvement, a goal that is not fully satisfied by GPT-4o.
In contrast, ChatLS produces the highest-quality synthesis scripts,
outperforming the baseline LLMs and demonstrating its effectiveness
in customization.

VI. CONCLUSION

It is crucial to customize synthesis scripts, guided by a thorough
understanding of design, target libraries, and feedback from logic
synthesis tool reports. To address this need, we propose methods
to enhance the ability of LLMs to customize synthesis scripts.
To improve the ability of LLMs to understand circuit designs,
we introduce CircuitMentor, which efficiently extracts the global
characteristics of designs while assisting LLMs in understanding
their local characteristics. Additionally, to enhance the ability of
LLMs to customize high-quality logic synthesis scripts, we present
SynthRAG, which supplies relevant information for script cus-
tomization. Futhermore, to aid LLMs in selecting the appropriate
commands within logic synthesis tools based on design and user
specifications, we introduce SynthExpert, which works in tandem
with SynthRAG. Experimental results demonstrate that the proposed
framework, ChatLS, effectively and efficiently customizes synthe-
sis scripts, aligning with user preferences and optimizing design
performance. Future work could explore extending this framework
to collaborate with a wider array of logic synthesis tools, such as
PrimePower [52], to further advance the automation of the logic
synthesis workflow.
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