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Background
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Figure 1. Normalized Attention Score.

Transformers often miss the golden document in a noisy context.

Contribution

Inspired by the operational amplifiers (OpAmp), we introduce OpAmp adapta-
tion with adapters, an efficient approach for refining the attention mechanism
to enhance focus on the most relevant context leveraging parameter-efficient
fine-tuning (PEFT) techniques. Our contributions are as follows:

We introduce the OpAmp adaptation for zoom attention to the most
relevant context in noisy contexts;
Implement OpAmp adaptation with adapters, which are fine-tuned with
our noisy context dataset, achieving significant improvements;
Develop OpAmp models with our OpAmp adaptation method, surpassing
current SOTA LLMs in various noisy-context benchmarks.
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Figure 2. The Operational Amplifier with Two input Voltages 𝑉 +
in and 𝑉 −

in .

The CMRR 𝒦 is controlled by resistances 𝑅1, 𝑅2, 𝑅3, 𝑅4:

𝑉out = 21.5𝑝𝑡𝑉 +
in ⋅ ( 𝑅4

𝑅3 + 𝑅4
⋅ 𝑅1 + 𝑅2

𝑅1
) − 𝑉 −

in ⋅ 𝑅2
𝑅1

= 𝐴𝑑(𝑉 +
in − 𝑉 −

in ) + 𝐴𝑐
2 (𝑉 +

in + 𝑉 −
in ). (1)

OpAmp Adaptation

Inspired by the operational amplifier, we propose the OpAmp adaptation, which
modifies the original attention mechanism into the OpAmp attention mecha-
nism.

⃗𝑀̄ = 𝐴𝑑(𝑀⃗+ − 𝑀⃗−) + 𝐴𝑐
2 (𝑀⃗+ + 𝑀⃗−), (2)

where ⃗𝑀̄ is the denoised attention matrix via OpAmp adaptation, 𝑀⃗+ and
𝑀⃗− are formulated through adapters.
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Figure 3. Overview of the OpAmp Adaptation with Adapters.

Zero Initialization

At the onset of training, we employ zero initialization to promote
identity mapping. Specifically, 𝑊⃗2 is initialized to zero to guarantee that
𝐸𝑖

𝑗( ⃗𝑥) = ⃗𝑥.
Furthermore, to prevent any disruption to the original 𝑀⃗ during the
initial phase of training, we set 𝐴𝑐 = 1 and regulate 𝒦 = 𝐴𝑑

𝐴𝑐
by

adjusting the values of 𝐴𝑑.
As a result, at the initial stage, Equation (2) reduces to:

⃗𝑀̄ = 𝐴𝑑 ⋅ (𝑀⃗ − 𝑀⃗) + 𝐴𝑐
2 ⋅ (𝑀⃗ + 𝑀⃗),

= 𝐴𝑑 ⋅ 0 + 𝐴𝑐
2 ⋅ 2𝑀⃗ = 𝑀⃗, (3)

Experiment Settings

LongCite-45k Neural-Bridge-RAG Tulu3-SFT-Mix

NCFT 30k 20k 450k

Table 1. Training Dataset Composition and Proportions.

Benchmark Source Max Length Metric # Data

Long-Context QA

NarrativeQA Literature, Film 64K EM 1009
Qasper Science 8K PM 200
QuALITY Literature 8K Acc. 1065
LooGLE Science 32K EM 1427

Multi-Hop QA

HotpotQA Wikipedia 16K EM 200
MuSiQue Wikipedia 16K EM 200
MultiHopRAG News 8K EM 2255

Noisy-RAG QA

CoQA Multi-field 4K EM 500
QuAC Wikipedia 4K PM 996
QReCC Multi-field 4K PM 643

Table 2. An Overview of the Dataset Statistics for the Noisy-Context Benchmark.

Experiment Results

Qwen2.5
OpAmp-72B

Llama3
ChatQA2-70B

Qwen2.5
72B inst

Llama3.3
70B inst

DeepSeek
V3

GPT-4o
0806

LooGLE 66.3 59.1 64.9 63.0 63.4 62.7

NarrativeQA 61.7 59.8 60.2 61.5 60.5 61.5

MultiHopRAG 89.6 78.2 89.2 83.7 88.6 87.7

HotpotQA 77.5 70.5 76.0 74.5 77.0 77.5

MuSiQue 48.0 39.0 44.0 47.5 52.5 53.0

CoQA 92.4 80.2 85.8 88.2 88.4 88.6

Table 3. Performance of Qwen2.5-OpAmp-72B on various Noisy Context Benchmarks.

Llama3.1
OpAmp-8B

Llama3
ChatQA2-8B

Mistral
7B inst-v0.3

Llama3.1
8B inst

Qwen2.5
7B inst

LooGLE 56.6 50.7 51.6 56.1 53.8
NarrativeQA 57.4 53.1 44.7 55.9 47.7
MultiHopRAG 70.5 50.9 69.5 63.9 66.9
HotpotQA 61.0 56.5 58.0 58.5 59.5
MuSiQue 35.0 23.0 28.5 29.5 31.5
CoQA 85.4 78.2 70.6 82.2 84.2

Table 4. Performance of Llama3.1-OpAmp-8B on various Noisy Context Benchmarks.

Hallucination

Method 𝒦
FaithEval

Inconsistent Unanswerable Counterfactual Avg.(EM) (EM) (EM)

QLoRA - 24.1 46.1 71.6 47.3

OpAmp
Adapter

1 45.5 53.1 76.3 58.3 (+11.0)
5 42.1 53.7 75.9 57.2 (+9.90)
10 45.3 53.0 75.1 57.8 (+10.5)
20 22.3 58.8 73.8 51.6 (+4.30)

Table 5. Ablation Studies on FaithEval using Llama3.1-8B-Base as the Base Model.

Visualization of Attention
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Figure 4. Normalized Attention score.

Our OpAmp model demonstrates significant attention denoise capability compared
to the base model and QLoRA model.
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Figure 5. Normalized Attention Score with Different Values of 𝒦 Utilizing for OpAmp Adaptation.
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