LSTP: A Logic Synthesis Timing Predictor

Haisheng Zheng ♠ Zhuolun He ♠♡ Fangzhou Liu ♠♡ Zehua Pei ♠♡ Bei Yu♡

- ♣ Shanghai Artificial Intelligence Laboratory
- [♡] The Chinese University of Hong Kong

Outline

1 Introduction

2 Algorithm

3 Experiments

Introduction

Background

Logic Synthesis is Critical:

- Architecture exploration relies on the acquisition of metrics reported by logic synthesis ^[1].
- Logic synthesis quality determines the best possible design space of subsequent procedure ^[2].

04/23

^[1] Chen Bai et al. (2021). "BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration Framework". In: *Proc. ICCAD*.

^[2] Ceyu Xu et al. (2022). "SNS's Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor". In: *Proc. ISCA*.

Background

Logic Synthesis is Critical:

- Architecture exploration relies on the acquisition of metrics reported by logic synthesis ^[1].
- Logic synthesis quality determines the best possible design space of subsequent procedure ^[2].

Can we efficiently predict the desired metrics without actually running expensive logic synthesis?

04/23

^[1] Chen Bai et al. (2021). "BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space Exploration Framework". In: *Proc. ICCAD*.

^[2] Ceyu Xu et al. (2022). "SNS's Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor". In: *Proc. ISCA*.

Obtain the Performance of a Circuit: Previous Work

Work	Target	Algorithm		
D-SAGE [3]	Timing	Graph Neural Network		
Yu et al. [4]	Timing, Area	Long Short Term Memory		
PowerNet [5]	Dynamic IR Drop	Convolutional Neural Network		
GRANNITE [6]	Power	Graph Neural Network		
Deep H-GCN [7]	Analog Circuit Degradation (i.e., Aging)	Graph Neural Network		
De <i>et al</i> . [8]	Timing	Machine Learning Methods		
SNS [9]	Timing, Area, Power	Transformer		

^[2] Ceyu Xu et al. (2022). "SNS's Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor". In: Proc. ISCA.

^[3] Ecenur Ustun et al. (2020). "Accurate Operation Delay Prediction for FPGA HLS Using Graph Neural Networks". In: Proc. ICCAD.

^[4] Cunxi Yu et al. (2020). "Decision Making in Synthesis Cross Technologies Using LSTMs and Transfer Learning". In: Proc. MLCAD.

^[5] Zhiyao Xie et al. (2020). "PowerNet: Transferable Dynamic IR Drop Estimation via Maximum Convolutional Neural Network". In: *Proc. ASPDAC*.

^[6] Yanqing Zhang et al. (2020). "GRANNITE: Graph Neural Network Inference for Transferable Power Estimation". In: Proc. DAC.

^[7] Tinghuan Chen et al. (2021). "Deep H-GCN: Fast Analog IC Aging-Induced Degradation Estimation". In: IEEE TCAD.

^[8] Sayandip De et al. (2022). "Delay Prediction for ASIC HLS: Comparing Graph-Based and Non-Graph-Based Learning Models". In: IEEE TCAD. 05/23

Logic Synthesis Recipes are NOT One-Size-Fits-All

Comparison of Different Top Percentages.

• OpenABC-D^[10] has pointed out quantitatively that the similarity between the best synthesis recipes for a set of benchmark circuits is less than 30%.

^[10] Animesh Basak Chowdhury et al. (2021). "OpenABC-D: A Large-Scale Dataset for Machine Learning Guided Integrated Circuit Synthesis". In: arXiv preprint.

Optimization Sequence Quality Improvement

Previous Works:

- Yu *et al.* ^[11] propose to train a Convolutional Neural Network (CNN) to predict the quality of an optimization sequence.
- Reinforcement Learning (RL) is leveraged ^{[12][13]} to generate fixed-length optimization sequences.

^[11] Cunxi Yu et al. (2018). "Developing Synthesis Flows without Human Knowledge". In: *Proc. DAC*.

^[12] Winston Haaswijk et al. (2018). "Deep Learning for Logic Optimization Algorithms". In: *Proc. IS-CAS*.

^[13] Keren Zhu et al. (2020). "Exploring Logic Optimizations with Reinforcement Learning and Graph Convolutional Network". In: *Proc. MLCAD*.

Problem Formulation

Logic Synthesis Timing Prediction:

• Given a gate-level netlist as an And-Inverter Graph (AIG) representing a set of Boolean functions and a sequence of subgraph optimization procedures for the AIG graph, design a novel learning methodology that automatically predicts the final timing after applying the optimization procedures to the AIG.

Algorithm

Overall Flow of LSTP.

RTL-Analyzer compiles the input design and transforms it into an AIG representation.

Overall Flow of LSTP.

- RTL-Analyzer compiles the input design and transforms it into an AIG representation.
- ACCNN is a Customized GNN for node sampling and feature extraction of the AIG circuit.

Overall Flow of LSTP.

- RTL-Analyzer compiles the input design and transforms it into an AIG representation.
- ACCNN is a Customized GNN for node sampling and feature extraction of the AIG circuit.
- **SeqEncoder** is a Transformer Encoder for optimization sequence features extraction.

Overall Flow of LSTP.

- RTL-Analyzer compiles the input design and transforms it into an AIG representation.
- ACCNN is a Customized GNN for node sampling and feature extraction of the AIG circuit.
- **SeqEncoder** is a Transformer Encoder for optimization sequence features extraction.
- MLP aggregates both the optimization sequence features and the circuit diagram features to predict the timing of the input design.

RTL Analyser

Visualization of RTL Analyser.

ACCNN: Cascaded Cones

Motivation:

- The delay of a circuit depends on the number of hops on the longest path from the primary inputs (PIs) to the primary outputs (POs).
- We wish to design an algorithm to effectively exploit the characteristics of graph representation for the longest path in AIG.

ACCNN: Cascaded Cones

A Visual Illustration of Sampling Cascaded Cones.

A Random Walk-Based Approach to Sample Cascaded Cones Within the Circuit:

- Each 'path' originate from primary input (PI) and end at primary output (PO).
- The output of flip-flop \rightarrow PI.
- The input of flip-flop \rightarrow PO.

ACCNN: Netlist Feature Extraction

Motivation:

- We aim for a model that similar to logic simulation, efficiently propagating information step-by-step along the sampled paths.
- ABGNN^[14] serves this purpose well.

ACCNN: Netlist Feature Extraction

A Visual Illustration of ACCNN.

• Feature Aggregation:

$$a_{\{i:\mathcal{D}(i,v)=\Delta-k\}}^{(k)} = \text{AGGREGATE}(\{h^{(k-1)}u : u \in N(i)\}). \tag{1}$$

• Update Function:

$$h_{\{i:\mathcal{D}(i,v)=\Delta-k\}}^{(k)} = \text{COMBINE}(a_i^{(k)}, h_i^{(0)}).$$
 (2)

Optimization Sequence Feature Extraction: Motivation

- (a)–(d) Equivalent Factored Forms; (e) Area/Delay Trade-Off for the Trees.
- Boolean Expression: ab + acd + acef + acegh.
- Assuming zero arrival time for all PIs, unit area (A = 1), unit delay (D = 1).

Optimization Sequence Feature Extraction: Motivation

- (a)–(d) Equivalent Factored Forms; (e) Area/Delay Trade-Off for the Trees.
- It is hardly possible for designers to determine the effect of optimization sequences for different designs.
- We need a model that takes into account optimization sequence ordering and position.

SeqEncoder: Optimization Sequence Feature Extraction

A Visual Illustration of SegEncoder.

Transformer^[15] is one of such models:

Attention
$$(\vec{Q}, \vec{K}, \vec{V}) = \operatorname{softmax}(\frac{\vec{Q}\vec{K}^{\top}}{\sqrt{d_k}})\vec{V}$$
 (3)

SeqEncoder: Optimization Sequence Feature Extraction

A Visual Illustration of *SeqEncoder*.

Optimization Methods

Balancing, Reconfiguration, Replacing and Rewriting.

SeqEncoder: Optimization Sequence Feature Extraction

A Visual Illustration of SegEncoder.

SeqEncoder supports extracting features of optimization sequences of length 20 or less, when the length of the optimization sequence is less than 20:

- Zero padding → 'empty optimization'.
- ullet [empty, rewrite, balance, . . . , resub, restructure, refactor].

Experiments

Experimental Setup

- Developed the timing prediction framework in Python.
 - Tools: Yosys, ABC.
 - Libraries: Pytorch Geometric, PyTorch, NetworkX.
- Dataset: Open-Source Designs.
- Mean Absolute Percentage Error (MAPE):

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \left| \frac{\hat{Y}_i - Y_i}{Y_i} \right|.$$
 (3)

Performance of LSTP

Table: Evaluation Accuracy (MAPE).

Name	# PI	# PO	# Node	# Level	SNS [15]	Runtime (s)	LSTP	Runtime (s)
aes	683	529	39215	44	50.21%	2.85	25.44%	3.38
des3_area	303	64	7766	47	53.84%	2.16	20.29%	0.70
dft	37597	37417	488165	83	86.90%	27.18	33.56%	55.53
fpu	632	409	55935	1522	26.11%	4.96	3.35%	6.97
idft	37603	37419	481184	82	5.07%	16.16	8.18%	54.04
mem_ctrl	1187	962	29814	56	23.21%	32.02	19.22%	3.71
sasc	135	125	1214	15	21.44%	2.38	2.48%	0.12
ss_pcm	104	90	762	13	67.82%	2.30	6.46%	0.09
tinyRocket	4561	4181	99775	156	37.31%	81.87	10.81%	11.86
usb_phy	132	90	893	16	14.4%	2.65	7.75%	0.10
Average					38.63%	17.45	13.75%	13.65

• LSTP outperforms prior works on all the test cases except for the idft.

Proc. ISCA. 20/23

 $^{^{[2]}}$ Ceyu Xu et al. (2022). "SNS's Not a Synthesizer: A Deep-Learning-Based Synthesis Predictor". In:

LSTP for Optimization Sequence Generation

Table: Comparison of Timing Minimums.

Name	Initial (ns)	resyn2-2 (ns)	Improvement	LSTP (ns)	Improvement
aes	1.58	1.37	13.29%	1.24	21.52%
des3_area	2.66	3.74	-40.60%	3.33	-25.19%
dft	5.82	6.35	-9.11%	4.94	15.12%
fpu	51	41.5	18.63%	40.34	20.90%
idft	5.82	6.35	-9.11%	5.54	4.81%
mem_ctrl	6.74	3.03	55.04%	2.94	56.38%
sasc	0.89	0.69	22.47%	0.49	44.94%
ss_pcm	0.66	0.58	12.12%	0.48	27.27%
tinyRocket	78.1	12	84.64%	10.39	86.70%
usb_phy	0.41	0.42	-2.44%	0.32	21.95%
Average			14.49%		27.44%

• LSTP can be used to find a *Better Optimization Sequence*.

Conclusion

In this paper, we proposed:

- A Machine Learning-Driven logic synthesis timing predictor.
- A Specialized GNN to sample and learn the intrinsic features of circuit AIG.
- An Appropriate Neural Model to model the complex interaction between optimization passes and their effects on the input netlist.

THANK YOU!