

CBTune: Contextual Bandit Tuning for Logic Synthesis

Fangzhou Liu 🛕 Zehua Pei 🖣 Ziyang Yu 🖣 Haisheng Zheng 🖺 Zhuolun He 🗖 Tinghuan Chen 🖣 Bei Yu 🖣 [♠] CUHK [♥] Shanghai Al Lab [♣] CUHK (SZ)

Highlights

- We propose **CBTune**, adapting the contextual bandit algorithm to facilitate efficient transformation selection through iterative model tuning.
- We implement the Syn-LinUCB algorithm as the agent and establish a context generator for informed decision-making in the bandit model.
- We present a novel "return-back" mechanism that revisits decisions to avoid local optima, distinguishing it from typical RL scenarios.
- Our method surpasses SOTA approaches for metrics and runtime within the same action space.

Background

ML-Enhanced Synthesis Optimization.

Machine Learning facilitates technology-independent optimization:

- 1. It models circuit structures to accurately predict performance metrics [4].
- 2. It employs reinforcement learning for rapid synthesis flow generation in an exponentially large solution space [1].

Figure 1. Illustration of Our Proposed Contextual Bandit-Based Approach for Efficient Synthesis Flow Generation.

Bandit-Based Search Model.

The Multi-Arm Bandit (MAB) model, known for its efficiency in generating synthesis flows [3], strikes a balance between exploration and exploitation to optimize rewards. CBTune leverages domain-specific knowledge by integrating contextual data into the MAB model, enabling progressive decision-making depicted in Figure 1.

Motivation

Existing Problems

- NN-based methods are limited by time-consuming dataset preparation and training, as well as restricted transferability and system integration.
- The non-contextual MAB approach neglects key arm features like optimization trends and AIG characteristics. It also makes sequence-based decisions without considering permutations, compromising final performance.

Figure 2. Score Iterations for Each Arm in Bandit Model.

Observations LinUCB [2] improves MAB model by integrating contextual details like arm and environmental features to guide decision-making. The score for each arm a is updated by:

LinUCB_a =
$$E(a|\mathbf{x}) + \alpha STD(a|\mathbf{x})$$

= $\mathbf{x}^{\top} \cdot \boldsymbol{\theta}_a + \alpha \sqrt{\mathbf{x}^{\top} \mathbf{A}_a^{-1} \mathbf{x}}$. (1)

1st term: Estimated Payoff

- Estimates average payoff from $m{x}$
- θ_a represents historical success
- 2rd term: Upper Confidence Bound
- Controlled by hyperparameter α
- Reflects uncertainty in estimation

Therefore, we propose a tailored bandit model to guide decisions for each individual transformation within the synthesis flow efficiently. This model:

- 1. Treats each transformation as an "arm" with equal initial UCB scores.
- 2. Iteratively updates scores to gauge performance.
- 3. Chooses and refines the highest-scoring arm in each iteration for enhanced score accuracy and reliability.
- 4. Steers scores towards the arms' true payoffs, with the highest-scoring arm reflecting the best optimization performance.

Pipeline

Figure 3. CBTune Framework Overview.

- Action Space: $A = \{ resub (rs), resub z (rsz), rewrite (rw), rewrite z (rwz), \}$ refactor (rf), refactor -z (rfz), balance (b)}
- Reward r: the scaled payoff of a single arm execution.

Methodology

Context Generator

The vector \boldsymbol{x} , fusing circuit characteristics $\boldsymbol{x^c}$ and the arm's long-term payoff $m{x^l}$, informs the agent's decisions by providing essential environmental and state insights.

Table 1. Contextual Information.

Feature	Example			
Circuit	Extracted by yosys and ccirc #Number of wires/cells/nots, #Max-			
Characteristics	imum delay, #Number of combinational nodes, #Number of high			
$(oldsymbol{x}^c)$	degree comb, #Reconvergence, #Node shape			
Long-term Payoff	Arm: rewrite (rw); $l = 5$; $m = 1$;			
of the Arm	$\{rw,rf,rf,rw,b\} \rightarrow Nodes: 28010, Level: 66$			
$(oldsymbol{x}^l)$	Arm: $refactor(rf); l = 4; m = 2;$			
	{ rf ,b,rf,rw} → Nodes: 28350, Level: 69			
	{ rf ,rw,b,rs} → Nodes: 28324, Level: 67			

Agent (Syn-LinUCB).

- 1. It utilizes short-term payoffs to direct the agent to select arms toward the optimal target value per step, enhancing local performance.
- 2. It accounts for long-term payoffs to avert local optima and explore potential optimization trends, fostering improved decision quality.

19: $a_{best} \leftarrow a_t$.

```
Algorithm 1 Syn-LinUCB
Input: Arms a \in \mathcal{A}, Context weights \mathbf{w} \in \mathbb{R}^d,
          Number of iterations T, Constant \rho.
Output: Best arm a_{best} in this step.
  1: r_a \leftarrow \text{Reward of all arms};
  2: Extract the AIG characteristics: \boldsymbol{x}_a^c \in \mathbb{R}^{d_1};
  3: Arm selection times s_a = 0;
  4: for t = 1, 2, ..., T do
               Update the long-term payoff: oldsymbol{x}_{t,a}^l \in \mathbb{R}^{d_2};
             Observe features of a \in \mathcal{A}: \boldsymbol{x}_{t,a} = [\boldsymbol{x}_a^c, \boldsymbol{x}_{t,a}^l] \in \mathbb{R}^d;
              for \forall a \in \mathcal{A} do
                    Initialize historical context and reward by \mathbf{A}_a = \mathbf{I}_d, \mathbf{b}_a = \mathbf{0}_d, \forall a is new;
                   Update hyperparameter \alpha by \alpha = 1.0 + \sqrt{\frac{\log(2.0/\rho)}{s_a}};
                   Update the decision parameter by \boldsymbol{\theta}_a = \boldsymbol{A}_a^{-1} \boldsymbol{b}_a;
10:
                   Calculate the weighted context \boldsymbol{x}_{t,a}^{w} = \boldsymbol{x}_{t,a} \boldsymbol{w};
11:
                   Update score by p_{t,a} = \boldsymbol{\theta}_a^{\top}(\boldsymbol{x}_{t,a}^w) + \alpha \sqrt{(\boldsymbol{x}_{t,a}^w)^{\top} \boldsymbol{A}_a^{-1}(\boldsymbol{x}_{t,a}^w)};
             end for
              Choose arm by a_t = \operatorname{argmax}_{a \in \mathcal{A}} p_{t,a};
              Increase the selection count of arm a_t by s_{a_t} = s_{a_t} + 1;
              Update the parameters m{A}_{a_t} and m{b}_{a_t} of the chosen arm a_t by
               oldsymbol{A}_{a_t} = oldsymbol{A}_{a_t} + oldsymbol{x}_{t,a_t} oldsymbol{x}_{a_t}^	op, \quad oldsymbol{b}_{a_t} = oldsymbol{b}_{a_t} + r_a oldsymbol{x}_{t,a_t};
18: end for
```

Return-back Mechanism To amend suboptimal decisions stemming from a lack of historical data, we allow CBTune the capacity to "regret" by recording synthesis results in a hash table. This allows CBTune to compare new results with past decisions and, if necessary, return to a crucial step to reselect a better arm, thus improving decision quality.

Check Out the Hash Table and Return Back

Figure 4. The Return-Back Mechanism in CBTune.

Evaluation Results

Figure 5. CBTune v.s. FlowTune [3] in AIG Node Optimization.

Benchmark	Initial	Greedy	Flowtune [3]		CBTune			
	#LUTs	#LUTs	#LUTs	$\tau(m)$	#LÛTs	#LŪTs	$\tau(m)$	
bfly	9019	8269	8216	76.47	7962	8086.03	29.63	
dscg	8534	8313	8302	77.15	7981	8119.84	30.44	
fir	8646	8385	8094	74.23	7820	7977.38	27.6	
ode	5244	5316	5096	34.83	4920	5046.71	17.32	
or1200	2776	2748	2747	20.08	2731	2754.07	15.62	
syn2	8777	8669	8603	81.33	8234	8360.53	31.67	
GEOMEAN	6631.20	6464.69	6364.89	54.04	6166.39	6271.82	24.48	
Ratio Avg.	1.000	0.975	0.960	1.000	0.930	0.946	0.453	
	or1200 syn2 GEOMEAN	or1200 2776 syn2 8777 GEOMEAN 6631.20	or1200 2776 2748 syn2 8777 8669 GEOMEAN 6631.20 6464.69	or1200 2776 2748 2747 syn2 8777 8669 8603 GEOMEAN 6631.20 6464.69 6364.89	or1200 2776 2748 2747 20.08 syn2 8777 8669 8603 81.33 GEOMEAN 6631.20 6464.69 6364.89 54.04	or1200 2776 2748 2747 20.08 2731 syn2 8777 8669 8603 81.33 8234 GEOMEAN 6631.20 6464.69 6364.89 54.04 6166.39	or1200 2776 2748 2747 20.08 2731 2754.07 syn2 8777 8669 8603 81.33 8234 8360.53 GEOMEAN 6631.20 6464.69 6364.89 54.04 6166.39 6271.82	

Table 2. CBTune v.s. FlowTune in 6-LUTs Optimization.

Benchmark	Initial	Greedy	DRiLLS [1]		RL4LS		CBTune	
Deficilitial K	#LUTs	#LUTs	#LŪTs	$\tau(m)$	#LŪTs	au(m)	#LŪTs	$\tau(m)$
max	721	697	694	32.58	687.8	54.34	684.25	6.01
adder	249	244	244	24.05	244	10.05	244	5.97
cavlc	116	115	112.2	26.02	111.3	3.22	111	2.37
ctrl	29	28	28	24.25	28	2.85	28	0.59
int2float	47	46	42.6	21.7	42.3	2.81	40	2.76
router	73	67	70.1	22.01	69.5	3.07	68.11	2.32
priority	264	146	133.4	23.32	142.9	5.9	138.86	3.41
i2c	353	291	292.1	25.17	289.32	7.55	283.11	3.61
sin	1444	1451	1441.5	51.15	1438	20.1	1441.67	9.71
square	3994	3898	3889.4	130	3889	72.88	3882.11	25.99
sqrt	8084	4807	4708	147.64	4685.3	196.15	4607	36.51
log2	7584	7660	7583.6	198.6	7580.1	125.28	7580	41.27
multiplier	5678	5688	5678	180.84	5672	187.81	5679.75	29.08
voter	2744	1904	1834.7	84.43	1678.1	330.48	1682.25	11.46
div	23864	4205	7944.4	259.75	7807.1	482	4180.91	25.58
mem_ctrl	11631	10144	10527.6	229.33	10309.7	1985.84	10242.57	45.81
GEOMEAN	926.59	732.69	753.49	59.48	748.34	34.54	712.83	8.37
Ratio Avg.	1.000	0.791	0.813	1.000	0.808	0.581	0.769	0.141

Table 3. CBTune v.s. NN-enhanced RL in 6-LUTs Optimization. * Last 10 in RL-PPO-Pruned [5].

Conclusion

- CBTune outperforms FlowTune in both AIG nodes/6-LUT optimization in both metric and runtime. Our method also outshines three RL-based methods by reducing 6-LUT counts up to 4.4%, all achieved in a swift 8.37 minutes per design.
- CBTune efficiently generates synthesis flows with excellent, stable results and fast runtime, without training data or complex procedures.

References

- [1] Abdelrahman Hosny, Soheil Hashemi, et al. DRiLLS: Deep reinforcement learning for logic synthesis. pages 581–586, 2020.
- [2] Lihong Li, Wei Chu, et al. A contextual-bandit approach to personalized news article recommendation. pages 661-670, 2010.
- [3] Walter Lau Neto, Yingjie Li, et al. Flowtune: End-to-end automatic logic optimization exploration via domain-specific multi-armed bandit. 2022.
- [4] Nan Wu et al. Lostin: Logic optimization via spatio-temporal information with hybrid graph models. pages 11-18, 2022.
- [5] Guanglei Zhou and Jason H Anderson. Area-Driven FPGA Logic Synthesis Using Reinforcement Learning. pages 159–165, 2023.