
CBTune: Contextual Bandit Tuning for Logic Synthesis
Fangzhou Liu ♠ Zehua Pei ♠ Ziyang Yu ♠ Haisheng Zheng ♡ Zhuolun He ♠♡ Tinghuan Chen ♣ Bei Yu ♠

♠CUHK ♡ Shanghai AI Lab ♣CUHK (SZ)

Highlights

WeproposeCBTune, adapting the contextual bandit algorithm to facilitate
efficient transformation selection through iterative model tuning.

We implement the Syn-LinUCB algorithm as the agent and establish a
context generator for informed decision-making in the bandit model.

We present a novel “return-back” mechanism that revisits decisions to avoid
local optima, distinguishing it from typical RL scenarios.

Our method surpasses SOTA approaches for metrics and runtime within the
same action space.

Background

ML-Enhanced Synthesis Optimization.

Machine Learning facilitates technology-independent optimization:
1. It models circuit structures to accurately predict performancemetrics [4].

2. It employs reinforcement learning for rapid synthesis flow generation in an
exponentially large solution space [1].

…

L

Contextual 
Information

QoR

Bandit Model

State

Evaluation Node / Level
Area / Delay

Circuit

Optimization 

Possible Return Back

Characteristics

Trend

Figure 1. Illustration of Our Proposed Contextual Bandit-Based Approach for Efficient
Synthesis FlowGeneration.

Bandit-Based SearchModel.

TheMulti-Arm Bandit (MAB) model, known for its efficiency in generating syn-
thesis flows [3], strikes a balance between exploration and exploitation to op-
timize rewards. CBTune leverages domain-specific knowledge by integrating
contextual data into theMABmodel, enabling progressive decision-making de-
picted in Figure 1.

Motivation

Existing Problems

NN-basedmethods are limited by time-consuming dataset preparation and
training, as well as restricted transferability and system integration.

The non-contextual MAB approach neglects key arm features like
optimization trends and AIG characteristics. It also makes sequence-based
decisions without considering permutations, compromising final
performance.

Score

Score Initial Improved Deteriorated Accurate 
Convergence Final Score

Figure 2. Score Iterations for Each Arm in Bandit Model.

Observations LinUCB [2] improves MAB model by integrating contextual de-
tails like arm and environmental features to guide decision-making. The score
for each arm a is updated by:

LinUCBa = E(a|x) + αSTD(a|x)

= x⊤ · θa + α
√

x⊤A−1
a x.

(1)

1st term: Estimated Payoff

Estimates average payoff fromx

θa represents historical success

2rd term: Upper Confidence Bound

Controlled by hyperparameter α

Reflects uncertainty in estimation

Therefore, we propose a tailored bandit model to guide decisions for each indi-
vidual transformation within the synthesis flow efficiently. This model:

1. Treats each transformation as an “arm” with equal initial UCB scores.

2. Iteratively updates scores to gauge performance.

3. Chooses and refines the highest-scoring arm in each iteration for enhanced
score accuracy and reliability.

4. Steers scores towards the arms’ true payoffs, with the highest-scoring arm
reflecting the best optimization performance.

Pipeline

Decision-Making in Bandit Model

Synthesis Tool

Agent Context 
Generator

Arm
s

Short-T
erm

 Payoff Long-Term Payoff

Sub-Sequences
Update

Best Arm

GiGi Gi−1Gi−1

Syn-LinUCB
Circuit 
Char.

3.4 2.5 2.4 5.1 5.2 4.4 2.1

1.2 4.8 6.5 2.4 5.4 2.8

Arm1 Arm2 Arm3 Arm4 Arm5 Arm6 Arm7

1.6 2.6 0.9 5.3 2.5 5.8 4.5

5.1 5.4 1.5 4.2 0.7 3.5 3.1

Step 1

Step 2

Step 3

Step L

G1G1

G2G2

G3G3

GLGL

5.7

a(L)a(L)

a(3)a(3)

a(2)a(2)

a(1)a(1)

Figure 3. CBTune FrameworkOverview.

Action Space: A = {resub (rs), resub -z (rsz), rewrite (rw), rewrite -z (rwz),
refactor (rf), refactor -z (rfz), balance (b)}.

Reward r: the scaled payoff of a single arm execution.

Methodology

Context Generator
The vector x, fusing circuit characteristics xc and the arm’s long-term pay-
off xl, informs the agent’s decisions by providing essential environmental
and state insights.

Table 1. Contextual Information.

Feature Example
Circuit
Characteristics
(xc)

Extracted by yosys and ccirc #Number of wires/cells/nots, #Max-
imum delay, #Number of combinational nodes, #Number of high
degree comb, #Reconvergence, #Node shape...

Long-term Payoff
of the Arm
(xl)

Arm: rewrite (rw); l = 5;m = 1;
{rw,rf,rf,rw,b}→Nodes: 28010, Level: 66
Arm: refactor (rf); l = 4;m = 2;
{rf,b,rf,rw}→Nodes: 28350, Level: 69
{rf,rw,b,rs}→Nodes: 28324, Level: 67

Agent (Syn-LinUCB).

1. It utilizes short-term payoffs to direct the agent to select arms toward
the optimal target value per step, enhancing local performance.

2. It accounts for long-term payoffs to avert local optima and explore
potential optimization trends, fostering improved decision quality.

Algorithm 1 Syn-LinUCB

Input: Arms a ∈ A, Context weightsw ∈ Rd,
Number of iterations T , Constant ρ.

Output: Best arm abest in this step.
1: ra← Reward of all arms;
2: Extract the AIG characteristics: xc

a ∈ Rd1;
3: Arm selection times sa = 0;
4: for t = 1, 2, ..., T do
5: Update the long-term payoff: xl

t,a ∈ Rd2;
6: Observe features of a ∈ A : xt,a = [xc

a, xl
t,a] ∈ Rd;

7: for ∀a ∈ A do
8: Initialize historical context and reward byAa = Id, ba = 0d, ∀a is new;
9: Update hyperparameter α by α = 1.0 +

√
log(2.0/ρ)

sa
;

10: Update the decision parameter by θa = A−1
a ba;

11: Calculate the weighted contextxw
t,a = xt,aw;

12: Update score by pt,a = θ⊤a (xw
t,a) + α

√
(xw

t,a)⊤A−1
a (xw

t,a);
13: end for
14: Choose arm by at = argmaxa∈A pt,a;
15: Increase the selection count of arm at by sat = sat + 1;
16: Update the parametersAat and bat of the chosen arm at by
17: Aat = Aat + xt,atx

⊤
at
, bat = bat + raxt,at;

18: end for
19: abest ← at.

Return-backMechanism To amend suboptimal decisions stemming from a
lack of historical data, we allow CBTune the capacity to “regret” by record-
ing synthesis results in a hash table. This allows CBTune to compare new
results with past decisions and, if necessary, return to a crucial step to res-
elect a better arm, thus improving decision quality.

Check Out the Hash Table and Return Back

Stage 1 Return 
Back ? Stage 2 Return 

Back ?

Y Y
N N

Figure 4. The Return-BackMechanism in CBTune.

Evaluation Results

21,600 21,950 22,300 22,650 23,000 23,350

68

72

76

80

84

88

#Nodes

L
ev

el
s

bfly

Random
Greedy
Flowtune
CBTune

21,500 21,800 22,100 22,400 22,700 23,000

65

70

75

80

85

#Nodes

L
ev

el
s

dscg

Random
Greedy
Flowtune
CBTune

20,900 21,200 21,500 21,800 22,100 22,400

65

70

75

80

85

#Nodes

L
ev

el
s

fir

Random
Greedy
Flowtune
CBTune

12,400 12,600 12,800 13,000 13,200 13,400

70

75

80

85

90

#Nodes

L
ev

el
s

ode
Random
Greedy
Flowtune
CBTune

10,100 10,200 10,300 10,400 10,500 10,600

125

130

135

140

145

#Nodes

L
ev

el
s

or1200
Random
Greedy

Flowtune
CBTune

22,800 23,100 23,400 23,700 24,000 24,300

65

68

71

74

77

80

83

#Nodes

L
ev

el
s

syn2

Random
Greedy
Flowtune
CBTune

Figure 5. CBTune v.s. FlowTune [3] in AIGNodeOptimization.

Benchmark
Initial Greedy Flowtune [3] CBTune

#LUTs #LUTs #LUTs τ (m) ˆ#LUTs ¯#LUTs τ (m)
bfly 9019 8269 8216 76.47 7962 8086.03 29.63
dscg 8534 8313 8302 77.15 7981 8119.84 30.44
fir 8646 8385 8094 74.23 7820 7977.38 27.6
ode 5244 5316 5096 34.83 4920 5046.71 17.32

or1200 2776 2748 2747 20.08 2731 2754.07 15.62
syn2 8777 8669 8603 81.33 8234 8360.53 31.67

GEOMEAN 6631.20 6464.69 6364.89 54.04 6166.39 6271.82 24.48
Ratio Avg. 1.000 0.975 0.960 1.000 0.930 0.946 0.453

Table 2. CBTune v.s. FlowTune in 6-LUTsOptimization.

Benchmark
Initial Greedy DRiLLS [1] RL4LS* CBTune
#LUTs #LUTs ¯#LUTs τ (m) ¯#LUTs τ (m) ¯#LUTs τ (m)

max 721 697 694 32.58 687.8 54.34 684.25 6.01
adder 249 244 244 24.05 244 10.05 244 5.97
cavlc 116 115 112.2 26.02 111.3 3.22 111 2.37
ctrl 29 28 28 24.25 28 2.85 28 0.59

int2float 47 46 42.6 21.7 42.3 2.81 40 2.76
router 73 67 70.1 22.01 69.5 3.07 68.11 2.32
priority 264 146 133.4 23.32 142.9 5.9 138.86 3.41
i2c 353 291 292.1 25.17 289.32 7.55 283.11 3.61
sin 1444 1451 1441.5 51.15 1438 20.1 1441.67 9.71

square 3994 3898 3889.4 130 3889 72.88 3882.11 25.99
sqrt 8084 4807 4708 147.64 4685.3 196.15 4607 36.51
log2 7584 7660 7583.6 198.6 7580.1 125.28 7580 41.27

multiplier 5678 5688 5678 180.84 5672 187.81 5679.75 29.08
voter 2744 1904 1834.7 84.43 1678.1 330.48 1682.25 11.46
div 23864 4205 7944.4 259.75 7807.1 482 4180.91 25.58

mem_ctrl 11631 10144 10527.6 229.33 10309.7 1985.84 10242.57 45.81

GEOMEAN 926.59 732.69 753.49 59.48 748.34 34.54 712.83 8.37
Ratio Avg. 1.000 0.791 0.813 1.000 0.808 0.581 0.769 0.141

Table 3. CBTune v.s. NN-enhanced RL in 6-LUTsOptimization.
* Last10 in RL-PPO-Pruned [5].

Conclusion

CBTune outperforms FlowTune in both AIG nodes/6-LUT optimization
in both metric and runtime. Our method also outshines three RL-based
methods by reducing 6-LUT counts up to 4.4%, all achieved in a swift 8.37
minutes per design.

CBTune efficiently generates synthesis flows with excellent, stable
results and fast runtime, without training data or complex procedures.

References

[1] AbdelrahmanHosny, Soheil Hashemi, et al. DRiLLS: Deep
reinforcement learning for logic synthesis. pages 581–586, 2020.

[2] Lihong Li, Wei Chu, et al. A contextual-bandit approach to personalized
news article recommendation. pages 661–670, 2010.

[3] Walter Lau Neto, Yingjie Li, et al. Flowtune: End-to-end automatic logic
optimization exploration via domain-specific multi-armed bandit. 2022.

[4] NanWu et al. Lostin: Logic optimization via spatio-temporal
information with hybrid graphmodels. pages 11–18, 2022.

[5] Guanglei Zhou and Jason H Anderson. Area-Driven FPGA Logic
Synthesis Using Reinforcement Learning. pages 159–165, 2023.

IEEE/ACM Design, Automation and Test in Europe Conference (DATE) 2024, Valencia, Spain


